skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zwickl, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum Information Science and Engineering (QISE) is rapidly gaining interest across a wide range of disciplines. As QISE continues to evolve, engineering will play an increasingly critical role in advancing quantum technologies. While efforts to characterize introductory QISE courses are underway, a comprehensive understanding of QISE education across the United States remains lacking. Developing a broad understanding of the QISE education landscape is crucial for addressing the needs of the growing quantum industry and ensuring equitable access for a diverse range of participants. This paper presents part of an ongoing effort to characterize the current landscape of QISE courses and degree programs in higher education in the US. To achieve this, we used publicly available information from university and college websites to capture information on over 8000 courses that address quantum in some way and nearly 90 QISE specific programs (e.g., degrees, minors, certificates). The majority of these programs are interdisciplinary and include engineering; 14 of them are housed exclusively in engineering departments. We find most programs are offered at research intensive institutions. Our results showcase an opportunity for program developers at non-research intensive institutions to justify the creation of QISE programs, which would also address calls from different stakeholders in QISE education for a more diverse QISE workforce. We suggest strategies based on the findings of this study such as integrating QISE into existing courses, investing in the development of QISE courses and programs at non-PhD-granting institutions, and making courses with QISE content accessible to students from a variety of majors. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Computational thinking is crucial for STEM researchers and practitioners, as it involves more than just developing skills—it is a way of thinking that enables effective problem-solving. STEM disciplines approach different problems and as such employ computational thinking uniquely, so students cannot rely solely on computer science to develop computational thinking. Less attention has been given to social aspects of computation, such as collaborating and communicating with and about computation even though social aspects are essential to problem solving. We utilized computational literacy as an alternative framework that explicitly includes social elements as a primary pillar. We conducted 15 interviews with STEM researchers to identify and organize the social aspects that play a role in their research. We organized goals by motivation (persuasion and productivity) and representation (visual and non-visual) to contextualize the use of communication in computation. We found that researchers use computation to explain research results, navigate decision making, establish rigor, ensure reproducibility, facilitate lab stability, and promote research efficiency. We used Activity Theory to describe the tools, norms, and communities associated with these goals to offer a more detailed framework for the social pillar of computational literacy within the context of science and engineering. Examples from each discipline within STEM are described. This social computational literacy framework can act as a guide for STEM educators and practitioners alike to use and teach social aspects of computation. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2026
  4. Joining a research group is one of the most important events on a graduate student’s path to becoming an independent physics researcher and earning a Ph.D. However, graduate students’ perspectives on the experience of finding a research group are not well documented in the literature. Understanding these perspectives is crucial for evaluating whether departments are providing students with adequate support while they search for a research group, and how difficulties during this process contribute to attrition. Semistructured interviews with N = 20 first and second year physics Ph.D. students reveal that incoming graduate students see joining a research group as a significant decision, and recognize that it may impact whether they will be able to complete the program. We found that students who struggled to find a group felt isolated and worried about falling behind their peers, whereas students who were able to immerse themselves in a positive group environment reported increased sense of belonging in their programs. The process of finding a research group often held differential importance for students identifying as women and nonbinary, who at times reported having to deprioritize their preferred research topic in order to be part of a more inclusive working environment. Although incoming graduate students characterized joining a research group as a significant decision, they often felt unprepared to make it. Moreover, they perceived an overall lack of guidance and structure from their departments, and characterized coursework as a barrier to searching for a group. Our findings suggest that providing students with better support during their group search process could help improve retention, particularly for traditionally underrepresented students, and improve students’ overall satisfaction in their graduate programs. Published by the American Physical Society2024 
    more » « less
  5. As students pursue a bachelor's degree in physics, they may ponder over which area to specialize in, such as theory, computation, or experiment. Often students develop preferences and dislikes, but it's unclear when this preference solidifies during their undergraduate experiences. To get a better understanding, we interviewed eighteen physics majors who were at different stages of their degree regarding their interest in theory, computation, and experimental methods. Out of the eighteen students, we chose to analyze only nine students who rated computation and theory the lowest. Our analysis did not include interest in experiment because the ratings were less negative. We used Social Cognitive Career Theory (SCCT) and Lucidchart to analyze students' responses and create individual graphical representations of the influences for each student. Through this, we uncovered how various factors such as learning experiences, self-efficacy, and outcome expectations influenced their low interest in a particular method. We found that lack of knowledge and experience is often the main reason why self-efficacy was lower. Students' lack of interest is also influenced by negative outcome expectations (e.g, math-intensive and a bad work-life balance) more than other SCCT factors. Our findings could help physics departments and educators identify positive and negative factors that could lead to a more motivating and inclusive physics curriculum. 
    more » « less
  6. In the summer of 2020, as COVID-19 limited in-person research opportunities and created additional barriers for many students, institutions either canceled or remotely hosted their research experience for undergraduates (REU) programs. The present qualitative phenomenographic study was designed to explore some of the possible limitations, challenges, and outcomes of this remote experience. Overall, 94 interviews were conducted with paired participants; mentees (𝑁=10) and mentors (𝑁=8) from six different REU programs. By drawing on cultural-historical activity theory as a framework, our study uncovers some of the challenges mentees faced while pursuing their research objectives and academic goals. These challenges included motivation, limited access to technology at home, limited communication among REU students, barriers in mentor-mentee relationships, and differing expectations about doing research. Despite the challenges, all mentees reported that this experience was highly beneficial. Comparisons between the outcomes of these remote REUs and published outcomes of in-person undergraduate research programs reveal many similar benefits, including student integration into science, technology, engineering, and mathematics culture. Our study suggests that remote research programs could be considered a means to expand access to undergraduate research experiences even after COVID-19 restrictions have been lifted. 
    more » « less
  7. Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X. (Ed.)
    Learning physics in any context, including undergraduate research experiences (UREs), requires learning its concepts and the relational structure between those new concepts with what students already know. We use concept maps, a knowledge elicitation method, for assessing mentees' and mentors' knowledge structures during Research Experience for Undergraduates programs. The study looked at maps from seven mentor-mentee pairs to understand how mentors and mentees use specific knowledge and strategies during the development of their concept maps. A qualitative analysis of the maps showed mentors and mentees differed in their ways of organizing and displaying their knowledge in terms of structure, scale, language, and use of conceptual and procedural knowledge. For instance, mentees used more procedural knowledge. It is perhaps due to their perception of finishing their REU projects and the fact that they may have only limited and superficial knowledge of specific topics. However, mentors' maps were smaller but more significant in using more comprehensive conceptual knowledge and connecting their maps to the broader scientific context. 
    more » « less